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Abstract

Recent advances in novel technologies (including chirped-pulse amplification, femtosecond laser systems operating in the
TW-PW range, high-gradient rf photoinjectors, and synchronized relativistic electron bunches with subpicosecond durations and
THz bandwidths) allow experimentalists to study the interaction of relativistic electrons with ultrahigh-intensity photon fields.
Ponderomotive scattering can accelerate these electrons with- extremely high gradients in a three-dimensional vacuum laser
focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield
complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding lasers pulses,
where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength
photons. Finally, one expects strong radiative corrections when the Doppler-upshifted laser wavelength approaches the
Compton scale. These are discussed within the context of high-field classical electrodynamics, a new discipline borne out of the

aforementioned innovations.

Introduction

The physics of laser-electron interactions changes dramatically at relativistic intensities, where the transverse momentum of
the charge in the laser wave, as measured in electron units, exceeds unity. Three fundamental vacuum processes are know to
occur in this regime: relativistic ponderomotive scattering,'! ultrahigh-intensity Compton backscattering,>® and nonlinear
Kapitza-Dirac scattering.*’

A detailed knowledge of the 3D electromagnetic field distribution of the focusing laser wave is needed to study
high-intensity scattering and properly model experimental results. For example, two ultrahigh-intensity relativistic electron
scattering experiments are currently underway at SLAC and CEA. In the first case, nonlinear (multiphoton) Compton
backscattering is investigated using the SLAC 50 GeV beam and a tightly focused TW-class laser;® at CEA, low-energy
electrons are accelerated by a TW laser.” In both instances, the 3D nature of the focused laser pulse is an essential feature of the
experiment and must be described accurately to interpret the resulting data correctly.

In this paper, we present a extensive theoretical and numerical description of the relativistic dynamics of a charged particle
interacting with an external electromagnetic field propagating in vacuo. To correctly describe the focusing and diffraction of
the drive laser in vacuum, the paraxial propagator approach is used, where the mass-shell condition (vacuum dispersion
relation) is approximated by a quadratic Taylor expansion in the 4-wavenumber. This approach is extremely accurate for any
realizable laser focus, and gives analytic solutions for the fields. Also, the gauge condition is exactly satisfied everywhere, thus
yielding a proper treatment of the axial electromagnetic field components due to wavefront curvature. The electron phase is used
as the independent variable, thus allowing for particle tracking over an arbitrarily large number of Rayleigh ranges, independent
of the nonlinear slippage and relativistic Doppler shift due to radiation pressure. The scattering of radiation by the accelerated
electron is also reviewed, in the case of plane electromagnetic waves of arbitrary intensity, and radiative corrections are briefly
discussed in the context of the classical Dirac-Lorentz equation. Finally, coherent harmonic generation is considered in the case

of a laser modulated relativistic electron beam.



Lorentz-Maxwell Electrodynamics, Plane Wave Theory

Canonical Invariants

The electron 4-velocity and 4-momentum are defined as #u =d<xx and pu=moc 4y, with u, u¥ =-1. Here, 7T is the
proper time along the dimensionless electron world line x4(7) . Neglecting radiative corrections,>® the natural length scale of the
problem is the laser wavelength, ¢/cwo , while time is measured in units of 1/wo, charge in units of €, and mass in units of 7.
The energy-momentum transfer equations are given by the Lorentz force d.u, =-(0,4, -8,4,)u”. For plane waves, the
normalized 4-vector potential of the laser wave is A4(9) = [0, A(#)], where ¢ =k, x#(7) is the relativistically invariant phase of

the traveling wave along the electron trajectory. Choosing k. = (1,0,0,1), with the wave propagating in the z-direction, one
has d:¢ = y~u; =k, which defines the light-cone variable ¥, and the 4-momentum transfer equations read

deu, =k dsAd (6), o)
dou; =d.y=u, 'd¢A.L(¢)- 2

Equation (2) shows that & is invariant: %= %o = yo (1-f0); also, Eq. (1) can be integrated to yield the transverse momentum
invariant® #,(t)=A.(4), and the energy and axial momentum are easily obtained since the 4-velocity is a unit 4-vector

¥ =1+u? +u?

u@) =0 [fo+ 21 +A0)A2@) ], ©)
W)= [1+ 11 +80439)]. )

The quadratic dependence of the energy and axial momentum on the normalized 4-vector potential denotes the relativistic
scattering regime, where A, > 1. Here, the ponderomotive force dominates the electron dynamics, yielding nonlinear slippage
and Doppler shifts.* Equation (4) also provides a scaling for the maximum energy in a plane wave: y*/yo =A?, for relativistic
electrons. Finally, the electron position is given by x(¢) = & _fi’ u(y)dy .

Compton Scattering, Nonlinear Spectra

The focus of this section is the spectral characteristics of the radiation scattered by the accelerated charge. The distribution
of energy radiated per unit solid angle, per unit frequency is derived® by considering the instantaneous radiated power, as
described by the Larmor formula, and applying Parsival's theorem to obtain

d*N(w, n) +o ) ‘ 2

m:%“_@nx(rzxﬂ) exp[zw(t—nox)]dt‘ , 5)
where @ is the frequency measured in units of @o, and @ is the fine structure constant. The quantity in Eq. (5) corresponds to
the average radiated photon number. Using the phase as the independent variable, one now has

dlen 122 | [ nx[nxu()] expliw[§+2(0) - nex(@)]} do] ©

where the plane wave invariance of k= ko has been used.
An interesting case is the backscattered radiation, where most of the power is radiated and where one obtains the maximum

relativistic Doppler upshift. Here, n=~2, z(§)—nex(¢) =2 z(¢), Zx[Zxu(@)] =-A.(#), and Eq. (6) can now be recast in
a manifestly covariant way, to read

LoD g r| 140 eefix 9+, 2wy v} ao] v

where the normalized Doppler-shifted frequency x =@ (1 +80)/(1 ~fo) is used.
The functional dependence of the spectrum is now independent of o, which only sets the frequency scale. This comes
directly from covariance: by changing the reference frame in which the scattering is viewed, one can vary the sign of fo and go



i

continuously from the FEL geometry'® to the laser acceleration geometry."'® For the FEL, the laser frequency is
Doppler-upshifted, while it is downshifted in the second case. In both cases, the normalized vector potential and the average
photon number are conserved as they are both Lorentz invariant. :

Circular Polarization

L4

Having derived the expression for the nonlinear backscattered light spectrum for arbitrary polarizations and intensities, we
will now examine one important case: circularly polarized plane waves. Here, the dimensionless 4-vector potential can be
expressed as 4 .(¢) =Ao g(¢) (£ sing+p cos #), which implies that the magnitude of the 4-vector potential varies adiabatically
as the pulse intensity envelope: A,4# = A2(§) =45 g*(#). A simple physical model for the pulse envelope is a hyperbolic
secant, i.e. g(¢) = cosh™'(¢/n), so that the electron's axial position can be determined analytically.”” Employing Eq. (7), the

energy radiated per unit solid angle, per unit frequency can be derived analytically® for this case:
2 2

dN(w@,~2) _adin*x)| Ow-,1,2iA5xm) D+, 1,2i A3 x 1)
dmda - 8 7 * T : ®
cosh[i-r](x—l)] cosh[—z—n(xﬁ-l)]

Here, @ is the degenerate (confluent) hypergeometric function,'” and 4= %[ l+in(xx 1)]. The electron dynamics are shown
in Fig. 1 (left), while the behavior of the nonlinear spectral function is illustrated in Fig.1 (right) for 7 =35, and different values
of 4o. In this context, the onset of nonlinear relativistic spectral effects corresponds to a situation where the electron phase ]
and the axial Doppler shift Ii; A2%(y) dy become comparable due to the intense radiation pressure of the drive laser pulse. This
is directly related to the relativistic mass shift of the “dressed” electron in the ultrahigh-intensity laser puise.

For linear polarization, the nonlinear effects are even stronger since there is an extra modulation of the axial velocity at the
second harmonic of the laser, resulting from the v x B ponderomotive force (radiation pressure).
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Fig. 1 Left: behavior of the normalized axial electron position for circular and linear pélariiatjons. Right: nonlinear spectral
function for circularly polarized light and different values of 4o. In both cases, cosh? intensity envelope, 77 = 5.

Temporal Pulse Shaping

A very important result of the nonlinear Doppler effect described above resides in the fact that, at ultrahigh intensities, the
peak photon number density in each line is nearly constant across the spectrum.® This indicates that for ultrashort laser pulses,
even in the case of circularly polarized light, the backscattered energy is redistributed over a wide spectral range instead of
contributing to a single, narrow, Compton backscattered line. This may be a serious difficulty for applications, such as the -7y
collider, which require the generation of a single, intense, highly collimated, narrow X-ray or y-ray line.

This problem can be mitigated by shaping the temporal envelope of the pump laser pulse in order to minimize the change in
the nonlinear Doppler shift during the interaction. In this scheme, as shown in Fig. 2 (left), the main part of the laser pulse is
flat, which gives a constant axial electron velocity during most of the interaction. The associated Doppler shift thus remains
nearly constant, resulting in the radiation of a narrow spectral line, as indicated in Fig. 2 (right). During the rise and the fall of
the laser pulse, transient lines are radiated, but they are minimized by using this technique, which is rather analogous to the use
of a tapered wiggler entrance in an FEL."
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Fig. 2 Left: hyperbolic secant envelope with a flat-top, and axial electron position. Right: nonlinear spectrum for
Ao=2, 7=5, =10.

To study the effects of pulse shaping on the Compton backscattered spectra in the nonlinear regime, and to find the optimum
temporal profile of the laser pulse envelope, we introduce variable pulse shapes which are modeled theoretically by considering
a circularly polarized pulse with a composite envelope, including a cosh™ rise and fall, and a constant flat-top:

8(¢) = cosh™'(¢/n) for # <0, g(#) =1 for 0< ¢ <6, and g(4) = cosh™! (#) for # > 0. The pulse shape is then parametrized by

the ratio of the flat-top to the FWHM, which is equal to p= Wu:z:ﬁ—)‘ For p=0, the pulse is a hyperbolic secant, and for

p =1, the pulse is square.
It is easy to see that in the nonlinear Fourier integral [Eq. (7)], the contribution of the flat-top is simply proportional to

Ag e’ 2487 fg(i sing+9 cosg) expli x (1+4%)] dp, ®

where the factor 1+ 43 corresponds to the relativistic Doppler shift due to the slower axial motion of the electron caused by the
constant laser radiation pressure. The integral in Eq. (9) yields a sinc spectrum. Clearly, for 8 > 7, the line at the normalized
Doppler-shifted frequency x* = 1/(1+43) dominates the backscattered spectrum, as shown in Fig. 2 (right). The shorter
wavelength lines correspond to a combination of the multiphoton lines resulting from the nonlinear Doppler shift during the
transient parts of the pulse and the oscillations of the sinc.

The beneficial effects of square optical pulses, which can be generated by holographic filtering at the Fourier plane of a
CPA laser,'"® can be evaluated quantitatively by considering the evolution of the ratio of the energy in the main line to the total
backscattered energy, as a function of the pulse shape. The results are shown in Fig. 3, clearly validating the pulse shaping
approach at ultrahigh intensities, and demonstrating that square optical pulses correspond to the optimum shape for Compton
backscattering applications.

~ Fig. 3 Energy contrast ratio as a function of pulse shape for various intensities.
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Colliding Laser Pulses.

Next, we suggest a new idea to produce extremely short wavelength photons, in which vacuum ponderomotive acceleration
(VPA) is combined with Compton backscattering [Fig. 4 (left)]. In this way, the energy acquired by an electron beam within the
drive laser pulse may be effectively extracted in the form of short wavelength photons by a colliding probe laser pulse, without



requiring complex structures to end the interaction, thus preserving the simplicity of VPA,' as compared to other laser
acceleration schemes. We will show that, in this process, the photon energy scales as /v = 4 (hc/lo) y% A¢, where 4o is the laser
wavelength (pump and probe), Yo is the initial beam energy, and Ao =e Eo do/21 moc? = (e Ao/ moc¥?) [Io/2 &0 is the
dimensionless amplitude of the 4-vector potential of the drive laser, expressed in terms of the focused intensity /o.

As an example, 1-TeV photons could be produced with an 8.5 x 102°W/cm? drive pulse at 800 nm, interacting with a 550
MeV beam. These parameters correspond to 4o = 20. The advantageous energy scaling of the interaction results directly from
the fact that Compton backscattering occurs when the initial electron energy has been boosted by VPA to its maximum value,
given by y*/yo = Ao, as shown above.

1t is instructive to evaluate the length required by this acceleration process. For a circularly polarized pulse interacting with
ultrarelativistic electrons, the nonlinear slippage length is roughly Az = —a—fo- j :o[l +A2 g%(v) ] dy, where o is the injection
phase of the electron. For a sin* temporal intensity envelope, which closely matches a Gaussian, with a finite duration 7 = woAf,
one finds Az =y3 ¢ At (1 +343/8). The acceleration length required to yield 1-GeV photons with a drive laser strength of 20 and
a duration of 20 fs FWHM is estimated at 2.5 m. This estimate denotes an upper bound, as 3D effects reduce the average laser

strength along the electron path.
The next step in the analysis shows that the drive and probe laser pulses are decoupled because of their disparate Doppler

shifts. The phase of the counterpropagating probe pulse is ¢ =¢+z, and the differential phase variation between each pulse
evolves along the electron trajectory according to dg@ = (d-) (dsT) = (Y +u)l(y—uz) = [yo(l + ,Bo)] =43 The last two
equalities are valid if the radiation pressure of the probe pulse is much smaller than that of the drive pulse. As a result, the drive
laser fields are “frozen” during the interaction between the accelerated electron and the probe pulse. Note that the relation
u; =A,+A, still holds. Here, A, is the normalized potential of the probe laser. Also, for a linearly polanzed drive pulse, the
fields are clearly equal to zero at the maximum electron energy, since they are proportional to d¢4x and A%(§) =AX#). Another
benefit of linear polarization is that the transverse position of the electron during backscattering is small: x(¢)
= a)ocho .\. i, u(y) dy, which yields x* =x(¢=0) = (1o/4 /7 )yo(1 +fo) Aonexp(-n*/4) for a Gaussian pulse. But, this equation
also indicates that the maximum transverse excursion during VPA can be large: o = (do/m)yo(l + fo) Ao. This must be
considered when defining the dimensions of the slab focus geometry, where the beam cross-section is £ =6« 0y, with g, chosen

as small as possible to minimize the drive pulse energy.
Finally, the angle of the electron trajectory during backscattenng, defined by the ratio of the transverse and axial momenta

in the drive laser, is small: 6*= arcta.n[ = @= 0)] _Ao/{yo[ﬁo +3(1+f0)43 ]} = 1/y0 Ao. Despite its low value, this angle is
critical in obtaining the full Doppler upshlft for the backscattered radlatlon To illustrate this point, it is instructive to compare
the Doppier upshift along the z-axis, (y* +u™)/(y* —u*) = [(1 +f0)/(1 - Bo)l(1 +4 3) =4 y3 A%, which is seen to scale as the
square of the drive field, to the full Doppler upshift, (y* +u*)}/(y* —u*) = [y +p )] =4 9% 43

The Compton backscattered spectrum is obtained from Eq. (7), by replacing the initial veloc1ty by the maximum velocity
due to the drive laser:

aQN(w, 0*) 1-f* | ¢+ X 1-8* 2
dmda = 4n TF |HC) exp{’w (W)[w +f7,4Xw) dy |} d‘PI : (10)
In the case of a Gaussian wavepacket, in the linear regime (42 < 1), one obtains
dN@.0) _ _a 47T 712 @ : :
dwdQ - an? 448 P ma ) | (11)

where the backscattered line frequency has the value, @ = 4 § A§. To estimate the total photon yield, Eq. (11) is integrated over
all frequencies, to obtain daN(6*) = a J/2/n% y3 A2 A3 1. The solid angle is then replaced by AQ = (n/y3 A%) to yield the average
number of photons scattered by an electron: Ny /N, = a2 A3y,

The overall scaling of the process, for a slab geometry, is sketched in Fig. 4 (right), where the following parameters are
fixed: 10 =800 nm, oy, =5 1o, and where the pulse duration is 20 fs FWHM. Using the frequency scaling, the relation between
the intensity and the vector potential, and the equation for the transverse excursion, with the constraint that the drive pulse

energy W =1, 0x 0y, the photon energy can be expressed in terms of the electron beam energy, Yo, and ¥, as T W33 or

3 :
more accurately, as @ = 4 (27%5,3- §—§ —II-HZE) 757, where the parameter I1= gy m3 c5/¢? = 0.6931 GW has been introduced.

Finally, the speculative nature of this proposal should be stressed: a conclusive argument for or against the practical
feasibility of this physical process as a viable radiation source requires detailed studies of some possible problems, including



coherence, electron beam phase space, 3D and diffraction effects, and radiation losses in parasitic synchrotron radiation
channels, all contributing to the final brightness and efficiency of the photon source.
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Fig. 4 Left: geometry of the colliding pulses interaction process. Right: photon energy (linear scale) as a function of beam and
drive laser energies for a slab geometry. Ao =800 nm, g, =5 1o, 20 fs FWHM.

Three-Dimensional Dynamics, Ponderomotive Scattering

The Paraxial Propagator

‘The 3D behavior of the laser electromagnetic field propagating in vacuum is now . described in the context of the paraxial
propagator formalism. The wave equation governing the 4-vector potential is (1A, + 47 j, =[3, 8*]1 4, +47 j. =0, where we

have introduced the 4-gradient operator, defined as 3, = 6% =(-0,, V), and the 4-current density j« =(p,Jj). Also, it is

important to note that the 4-potential must satisfy the Lorentz gauge conditiond, 4# =0
In vacuum (no sources), a general solution to the wave equation can be constructed as a Fourier superposition of

wavepackets of the form

4,00 = (17T ) [If§ Autie) expli k. x) d*k, 12)
where the 4-wavenumber &, satisfies the vacuum dispersion relation, which is also the mass shell condition for the photon field:

A2 (ky k*)=0.
When the laser pulse characteristics are defined at focus (z=0), the field distribution can be obtained in any given z-plane
by performing the integral

Au(x,y,z,0) = ﬂf Z"("‘—J;f:-?lexp[i (wt—kxx—kyy— [w? -k z) ]dsz_ dw, | (13)

where we have introduced the focal spectral density A,(k., @,z =0).

This result is easily interpreted: the temporal evolution of each wavepacket is described by the frequency spectrum, while
the transverse profile of the laser wave is expressed as an integral over a continuous spectrum of transverse vacuum eigenmodes.
The dispersion relation indicates how each transverse component of the wavepacket propagates, thus yielding wavefront

curvature and diffraction.
In vacuum, the gauge condition reduces to VeA4 =0, and is satisfied by requiring that 4 = V xXG . For a linearly polarized

Gaussian-elliptical focus, the generating field, G, takes the form

Gxy) =9 Gy(xu) , Gy(x,»,2=0,0) = :—:g(t) exl:’['(""/wm:)2 - (y/WOy)z] s 14)
where wox and w, refer to the beam waist along the x-axis and y-axis, respectively, 4o is the amplitude of the vector potential at
focus, ko corresponds to the central laser wavelength, and g(#) is the temporal variation of the laser wave, which can be
arbitrary. The propagation integral is now approximated by



Gy(x,p,z,0) = jﬂ 9.!"‘7“2_;‘:’_@] exp{i[w t—kex—kyy— (w - %)z]} d*k, do, (15)
where the square root factor was Taylor-expanded to second-order around @ =1 and k. =0. Clearly, the exact and
Taylor-expanded axial phase differ only for large values of k., where the spectral density is vanishingly small. The integrals
over d?k,_are tractable, as they are complex Gaussians:'’

Gy =221+ (&) T [1+(%) ] eo{-{=5T-[2T)
x exp [i {Farctan (%) + b arctan (55) - & 535 - 2[5 T} . “

where w.,(2) = Wary /1 +(@/zaxy)?, and zoey = 5 kow},, represent the Rayleigh ranges for each f-number.

Ponderomotive Scattering

The vector potential of the focusing wave is shown in Fig. 5. The algorithm developed to model the dynamics of a charge
interacting with the 3D laser fields employs the second-order Runge-Kutta method and uses the axial electron phase as the
integration variable to handle the nonlinear slippage and the relativistic Doppler shift.

For a laser focus with extremely large f~numbers, excellent agreement is found between the numerical results and the
analytic expressions obtained for plane wave dynamics; for smaller values of f, scattering is obtained. To obtain efficient
scattering, the electron must be seeded far from focus, so that when it has slipped into the nonlinear temporal phase of the pulse,
the focus is reached and the electron interacts with the spatio-temporal maximum of the laser wave. High-energy scattering
occurs for intermediate values of the f~numbers: for low values, the focus is too tight and the electron scatters away too early;
for very large values, we recover the plane wave interaction. The fact that, for higher initial injection energies, efficient

scattering requires larger values of the f~number is not surprising, since the transverse electron excursion scales like

% = % = yo(1 +fo) . For linear polarization, the largest scattering energies are achieved for £, > £,.
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Fig. 5 Transverse and axial vector potential components, in the plane of polarization, at three different times. The pulses are 6
cycles long and f: 3.

To assess the feasibility of laser acceleration based on this process, the total energy in the laser pulse is obtained by

w
integrating the Poynting vector flux over the focal spot and the pulse duration to obtain WW;z = 3—72[ 5 % sz %, where ro

is the classical electron radius. The case of a cylindrical focus (Wox =wg, = wo ) is considered, where the pulse FWHM is
maintained at 20 fs, and the product 4o wo is kept constant at 250 mm (constant energy of 20 J), while Ao is varied between 1
and 20, and the injection position is varied between -20 mm and focus. The results are shown in Fig. 6, and clearly indicate the
existence of an optimum combination of f~number and laser intensity for high-energy scattering, approximately obtained for a
normalized vector potential of 17.5 and f: 23. Here, there is a sharply defined acceptance range in the initial position, and the
scattering energy reaches 0.25 GeV. The acceleration process occurs over 3 mm, yielding a gradient of 85 GeV/m. These laser
parameters correspond to the next generation of CPA lasers."

.



Fig. 6 Scan of Ao and initial z for a constant pulse energy of 20 J.
Ao=1xm FWHM 20 fs, initial energy 10 MeV, x; =y; =0.
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Dirac-Lorentz Electrodynamics, Radiative Corrections

The Dirac-Lorentz equation® describes the covariant dynamics of a classical point electron, including the radiation reaction
effects due to the electron self-interaction. The main steps of Dirac’s derivation are outlined here. For conciseness, we use
electron units, where length, time, mass, and charge are measured in units of #o, #0/C, Mo, and ¢, respectively. In these units,
€o=1/4m, and po=4m. The electron 4-current density is ji(xa)= —f u,(xh) Sa(xy—x7) dr’, and the related
self-electromagnetic field Fjy = 0u 45 —3+A4] satisfies the driven wave equation [143(x1) = 47 j5(x4), which can be solved

using Green functions: Aj(x))=4n f: uy(xh) G(xs—xy) di’. The selfforce can now be evaluated as
F=- (a# A5 -3, A;) w = — 7 w(e2) [uy(h) O —uu(xh) 8y ] Gxs-x}) dr’. The advanced and retarded Green functions
both depend on the space-time interval 52 =(x—x"),(x—x'}: G*=—5(s?) [1F(xo-x})/|x0 —xy| ]. Replacing the partial
derivatives by the operator 8, =2 (x, —x},) 5‘3—2- the self-force reads

Fa=-2 5:: u'(x1) [uv(xﬁ) (0 = Xy) = () (v -x(,)] 5 ar. a7

Here, the new variable 7" = t— 7' is introduced, so that the range of integration explicitly includes the electron (singular point
7" =0). To evaluate the integral in Eq. (17), one can now use Taylor-McLaurin expansions in powers of T": X, —x,
=t"u, - Sa,+ %d,a,J +... and wu () =up(t-")=up—-1"a, + %z-d,a,, +..., where the 4-acceleration a, =d.u,. Using
the above expansions, one first finds that s? = —¢"2, which yields 25 ~ -5l 2. With this, the self-electromagnetic force now

reads F5 =~ j: {—%"- ay+ 5 [deay -y (av ")]} £5 4. This equation can be integrated by parts; using the' retarded
(causal) Green function, one finds Fj, = —3 T ay f #2) dt" +2[d.a, -u, (a, a”)] . The related 4-momentum transfer equation is

I

[}
here. The divergent integral on the left-hand side of the equation is the infinite electromagnetic mass which multiplies the
4-acceleration. Dirac first proposed® to remormalize this term away by using the time symmetrical Green function
G=(G~-G*)/2; with this, one obtains the Dirac-Lorentz equation

ay=-Fy,u’ +10 [d-a, —u, (a, a”)]. (18)

[1*’, 3 j al dT”:I ay=—Fuyu’+70 [deay —u, (ay @*)], where 7o =2/3 is the Compton time-scale, in the units of 7o/c used

One problem with this equation is unphysical, runaway solutions: contracting Eq. (18) with a”, one can see that, in the
absence of an external field, it reduces to au a* =(t0/2) d:(a, a*), which admits the runaway solution [a, a*)(7)
=[a, aylexp(2 1/10). To avoid these unphysical solutions, one must require that the Dirac-Rohrlich (DR) asymptotic
condition®” be satisfied: Lim au(z) =0.

Also, note that the second radiative correction term corresponds to the radiated 4-momentum H; thus, we can rewrite Eq.
(18) as ay = —F, u* +10 dza, — d.H,. For an external electric field deriving from a static potential, the time-like component
of the Dirac-Lorentz equation, which describes energy conservation, takes the form (here, Ho=W) d:y
SueVp+to d2y-dW=d 9 +T0d:y— W], and can be integrated to yield the conservation law A(y—¢+W)



=1y [d,y]:: , which indicates that, provided the DR asymptotic condition lim d.y=0 is satisfied, the electron potential

energy is converted to kinetic energy and radiation.

In this context, the small value of the fine structure constant, which corresponds to the ratio of the classical to quantum
electron scale (classical electron radius divided by the electron Compton wavelength), assures that the acausal effects related to
the electromagnetic mass renormalization will be smeared by quantum fluctuations before the strong classical radiative
correction regime is reached, thus preventing “naked acausalites”.

For nonlinear Compton scattering, the Dirac-Lorentz equation can be given as

ay=dy=Ly+to[diay—uu(ava’)] ,Lo=xE.,, L:=Lo =u,E,, (19)

where we recognize the light-cone variable x = y -, and the laser transverse electric field, and 7o = 2ro/3¢ = 0.626 X 1085 is
the Compton time-scale. Subtracting the axial component of Eq. (19) from the temporal component, we obtain an equation

governing the evolution of x,
d:x =10 [d*k -k (a, a”)]. 20)

Noting that E, =xdgd,, we also obtain an equation governing the evolution of the canonical momentum:
de(u, - A,) =10 [d?u, — u, (ay, a")]. Introducing the small parameter &= wo To, which measures the Doppler-shifted laser
wavelength in units of o, and using ¢ as the independent variable, Eq. (20) now reads dgx =¢ [ti%(lcz/ 2) - kX (dguy dgut)].
Since the right-hand side of this result is at least of order &, we can replace the terms in the brackets by their zeroth-order
approximation; here, we obtain a simple differential equation for the light-cone variable perturbation dy [ 1/x(¢) 1= e A} g%(¢),
where we recogmze the envelope of the circularly polarized laser pulse. This can easily be integrated to yield
M) =% +ed} j g%(y) dy. This equation describes the electron recoil for beam parameters similar to those of SLAC,’ as
illustrated in Fig. 7 (left) It is clear that at sufficient intensities, the relative radiative energy loss becomes significant.

Finally, the Dirac-Lorentz equation can be integrated backward in time to avoid runaways due to the electromagnetic mass
renormalization®**?! and the Compton backscattered spectrum is obtained by evaluating

d*N(w, -2) _am

=z ouaatr==1 L :2(%) e“p{’w[¢ 2f?, Ifc((vy//)) "’H

For the SLAC beam parameters, and a TW-class laser, the result is shown in Fig. 7 (right). At this intensity (0.22 TW/mm?),
the nonlinear Doppler shift yields complex spectra for both Lorentz and Dirac-Lorentz dynamics, but the lines are shifted,
analogous to the Lamb shift, and damped at high frequencies.
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Fig. 7 Left: fractional final electron energy after nonlinear Compton backscattering.  Right: Lorentz and Dirac-Lorentz
backscattered spectra.
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